Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Leukemia ; 38(1): 96-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857886

RESUMO

Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2-/- with hemochromatosis (Hfe-/-) or hepcidin-null (Hamp1-/-) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1-/- mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1-/- BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.


Assuntos
Anemia , Hemocromatose , Sobrecarga de Ferro , Síndromes Mielodisplásicas , Animais , Humanos , Camundongos , Anemia/metabolismo , Eritropoese/genética , Hemocromatose/genética , Hemocromatose/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
2.
Eur J Nutr ; 61(6): 2967-2977, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35320401

RESUMO

OBJECTIVES: We developed a natural polyphenol supplement that strongly chelates iron in vitro and assessed its effect on non-heme iron absorption in patients with hereditary hemochromatosis (HH). METHODS: We performed in vitro iron digestion experiments to determine iron precipitation by 12 polyphenol-rich dietary sources, and formulated a polyphenol supplement (PPS) containing black tea powder, cocoa powder and grape juice extract. In a multi-center, single-blind, placebo-controlled cross-over study, we assessed the effect of the PPS on iron absorption from an extrinsically labelled test meal and test drink in patients (n = 14) with HH homozygous for the p.C282Y variant in the HFE gene. We measured fractional iron absorption (FIA) as stable iron isotope incorporation into erythrocytes. RESULTS: Black tea powder, cocoa powder and grape juice extract most effectively precipitated iron in vitro. A PPS mixture of these three extracts precipitated ~ 80% of iron when 2 g was added to a 500 g iron solution containing 20 µg Fe/g. In the iron absorption study, the PPS reduced FIA by ~ 40%: FIA from the meal consumed with the PPS was lower (3.01% (1.60, 5.64)) than with placebo (5.21% (3.92, 6.92)) (p = 0.026)), and FIA from the test drink with the PPS was lower (10.3% (7.29 14.6)) than with placebo (16.9% (12.8 22.2)) (p = 0.002). CONCLUSION: Our results indicate that when taken with meals, this natural PPS can decrease dietary iron absorption, and might thereby reduce body iron accumulation and the frequency of phlebotomy in patients with HH. TRIAL REGISTRY: clinicaltrials.gov (registration date: 9.6.2019, NCT03990181).


Assuntos
Hemocromatose , Adulto , Estudos Cross-Over , Hemocromatose/tratamento farmacológico , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ferro , Ferro da Dieta , Polifenóis/farmacologia , Pós , Método Simples-Cego , Chá
3.
Blood ; 139(20): 3018-3029, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34601591

RESUMO

Hemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled intestinal iron absorption may lead to progressive iron overload (IO) responsible for disabling and life-threatening complications such as arthritis, diabetes, heart failure, hepatic cirrhosis, and hepatocellular carcinoma. The recent advances in the knowledge of pathophysiology and molecular basis of iron metabolism have highlighted that HC is caused by mutations in at least 5 genes, resulting in insufficient hepcidin production or, rarely, resistance to hepcidin action. This has led to an HC classification based on different molecular subtypes, mainly reflecting successive gene discovery. This scheme was difficult to adopt in clinical practice and therefore needs revision. Here we present recommendations for unambiguous HC classification developed by a working group of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society), including both clinicians and basic scientists during a meeting in Heidelberg, Germany. We propose to deemphasize the use of the molecular subtype criteria in favor of a classification addressing both clinical issues and molecular complexity. Ferroportin disease (former type 4a) has been excluded because of its distinct phenotype. The novel classification aims to be of practical help whenever a detailed molecular characterization of HC is not readily available.


Assuntos
Proteínas de Transporte de Cátions , Hemocromatose , Sobrecarga de Ferro , Proteínas de Transporte de Cátions/metabolismo , Hemocromatose/diagnóstico , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Ferro/metabolismo
4.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960751

RESUMO

Large variability in COVID-19 clinical progression urges the need to find the most relevant biomarkers to predict patients' outcomes. We evaluated iron metabolism and immune response in 303 patients admitted to the main hospital of the northern region of Portugal with variable clinical pictures, from September to November 2020. One hundred and twenty-seven tested positive for SARS-CoV-2 and 176 tested negative. Iron-related laboratory parameters and cytokines were determined in blood samples collected soon after admission. Demographic data, comorbidities and clinical outcomes were recorded. Patients were assigned into five groups according to severity. Serum iron and transferrin levels at admission were lower in COVID-19-positive than in COVID-19-negative patients. The levels of interleukin (IL)-6 and monocyte chemoattractant protein 1 (MCP-1) were increased in COVID-19-positive patients. The lowest serum iron and transferrin levels at diagnosis were associated with the worst outcomes. Iron levels negatively correlated with IL-6 and higher levels of this cytokine were associated with a worse prognosis. Serum ferritin levels at diagnosis were higher in COVID-19-positive than in COVID-19-negative patients. Serum iron is the simplest laboratory test to be implemented as a predictor of disease progression in COVID-19-positive patients.


Assuntos
Biomarcadores/sangue , COVID-19 , Ferro/sangue , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CCL2/sangue , Estudos de Coortes , Citocinas/sangue , Feminino , Ferritinas , Hepcidinas , Humanos , Inflamação , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Portugal , SARS-CoV-2
5.
Blood Adv ; 5(16): 3102-3112, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34402883

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease with poor prognosis and limited treatment strategies. Determining the role of cell-extrinsic regulators of leukemic cells is vital to gain clinical insights into the biology of AML. Iron is a key extrinsic regulator of cancer, but its systemic regulation remains poorly explored in AML. To address this question, we studied iron metabolism in patients with AML at diagnosis and explored the mechanisms involved using the syngeneic MLL-AF9-induced AML mouse model. We found that AML is a disorder with a unique iron profile, not associated with inflammation or transfusion, characterized by high ferritin, low transferrin, high transferrin saturation (TSAT), and high hepcidin. The increased TSAT in particular, contrasts with observations in other cancer types and in anemia of inflammation. Using the MLL-AF9 mouse model of AML, we demonstrated that the AML-induced loss of erythroblasts is responsible for iron redistribution and increased TSAT. We also show that AML progression is delayed in mouse models of systemic iron overload and that elevated TSAT at diagnosis is independently associated with increased overall survival in AML. We suggest that TSAT may be a relevant prognostic marker in AML.


Assuntos
Anemia , Leucemia Mieloide Aguda , Animais , Eritroblastos , Humanos , Ferro , Camundongos , Transferrina
6.
Kidney Med ; 2(3): 341-353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32734254

RESUMO

Patients with chronic kidney disease (CKD) are at increased risk for infection, attributable to immune dysfunction, increased exposure to infectious agents, loss of cutaneous barriers, comorbid conditions, and treatment-related factors (eg, hemodialysis and immunosuppressant therapy). Because iron plays a vital role in pathogen reproduction and host immunity, it is biologically plausible that intravenous iron therapy and/or iron deficiency influence infection risk in CKD. Available data from preclinical experiments, observational studies, and randomized controlled trials are summarized to explore the interplay between intravenous iron and infection risk among patients with CKD, particularly those receiving maintenance hemodialysis. The current evidence base, including data from a recent randomized controlled trial, suggests that proactive judicious use of intravenous iron (in a manner that minimizes the accumulation of non-transferrin-bound iron) beneficially replaces iron stores while avoiding a clinically relevant effect on infection risk. In the absence of an urgent clinical need, intravenous iron therapy should be avoided in patients with active infection. Although serum ferritin concentration and transferrin saturation can help guide clinical decision making about intravenous iron therapy, definition of an optimal iron status and its precise determination in individual patients remain clinically challenging in CKD and warrant additional study.

7.
Eur Heart J ; 41(28): 2681-2695, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-30903157

RESUMO

AIMS: Whether and how iron affects the progression of atherosclerosis remains highly debated. Here, we investigate susceptibility to atherosclerosis in a mouse model (ApoE-/- FPNwt/C326S), which develops the disease in the context of elevated non-transferrin bound serum iron (NTBI). METHODS AND RESULTS: Compared with normo-ferremic ApoE-/- mice, atherosclerosis is profoundly aggravated in iron-loaded ApoE-/- FPNwt/C326S mice, suggesting a pro-atherogenic role for iron. Iron heavily deposits in the arterial media layer, which correlates with plaque formation, vascular oxidative stress and dysfunction. Atherosclerosis is exacerbated by iron-triggered lipid profile alterations, vascular permeabilization, sustained endothelial activation, elevated pro-atherogenic inflammatory mediators, and reduced nitric oxide availability. NTBI causes iron overload, induces reactive oxygen species production and apoptosis in cultured vascular cells, and stimulates massive MCP-1-mediated monocyte recruitment, well-established mechanisms contributing to atherosclerosis. NTBI-mediated toxicity is prevented by transferrin- or chelator-mediated iron scavenging. Consistently, a low-iron diet and iron chelation therapy strongly improved the course of the disease in ApoE-/- FPNwt/C326S mice. Our results are corroborated by analyses of serum samples of haemochromatosis patients, which show an inverse correlation between the degree of iron depletion and hallmarks of endothelial dysfunction and inflammation. CONCLUSION: Our data demonstrate that NTBI-triggered iron overload aggravates atherosclerosis and unravel a causal link between NTBI and the progression of atherosclerotic lesions. Our findings support clinical applications of iron restriction in iron-loaded individuals to counteract iron-aggravated vascular dysfunction and atherosclerosis.


Assuntos
Aterosclerose , Sobrecarga de Ferro , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Dieta , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Camundongos , Transferrina
8.
Pharmaceuticals (Basel) ; 12(3)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443397

RESUMO

The HFE gene (OMIM 235200), most commonly associated with the genetic iron overload disorder Hemochromatosis, was identified by Feder et al. in 1996, as a major histocompatibilty complex (MHC) class I like gene, first designated human leukocyte antigen-H (HLA-H). This discovery was thus accomplished 20 years after the realization of the first link between the then "idiopathic" hemochromatosis and the human leukocyte antigens (HLA). The availability of a good genetic marker in subjects homozygous for the C282Y variant in HFE (hereditary Fe), the reliability in serum markers such as transferrin saturation and serum ferritin, plus the establishment of noninvasive methods for the estimation of hepatic iron overload, all transformed hemochromatosis into a unique age related disease where prevention became the major goal. We were challenged by the finding of iron overload in a 9-year-old boy homozygous for the C282Y HFE variant, with two brothers aged 11 and 5 also homozygous for the mutation. We report a 20 year follow-up during which the three boys were seen yearly with serial determinations of iron parameters and lymphocyte counts. This paper is divided in three sections: Learning, applying, and questioning. The result is the illustration of hemochromatosis as an age related disease in the transition from childhood to adult life and the confirmation of the inextricable link between iron overload and the cells of the immune system.

9.
Nat Metab ; 1(5): 519-531, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31276102

RESUMO

Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The Nrf2 transcription factor orchestrates cell-intrinsic protective antioxidant responses, and the peptide hormone hepcidin maintains systemic iron homeostasis, but is pathophysiologically decreased in haemochromatosis and beta-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives Bmp6 expression in liver sinusoid endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6-hepcidin response to oral and parenteral iron is impaired and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6-hepcidin axis, improving iron homeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in beta-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to control of systemic iron homeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders.


Assuntos
Proteína Morfogenética Óssea 6/fisiologia , Hepcidinas/fisiologia , Homeostase/fisiologia , Ferro/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Talassemia beta/fisiopatologia , Humanos
10.
Biofactors ; 45(4): 583-597, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31132316

RESUMO

HFE-hemochromatosis is a disease characterized by a systemic iron overload phenotype mainly associated with mutations in the HFE protein (HFE) gene. Osteoarthritis (OA) has been reported as one of the most prevalent complications in HFE-hemochromatosis patients, but the mechanisms associated with its onset and progression remain incompletely understood. In this study, we have characterized the response to high iron concentrations of a primary culture of articular chondrocytes isolated from newborn Hfe-KO mice and compared the results with that of a similar experiment developed in cells from C57BL/6 wild-type (wt) mice. Our data provide evidence that both wt- and Hfe-KO-derived chondrocytes, when exposed to 50 µM iron, develop characteristics of an OA-related phenotype, such as an increased expression of metalloproteases, a decreased extracellular matrix production, and a lower expression level of aggrecan. In addition, Hfe-KO cells also showed an increased expression of iron metabolism markers and MMP3, indicating an increased susceptibility to intracellular iron accumulation and higher levels of chondrocyte catabolism. Accordingly, upon treatment with 50 µM iron, these chondrocytes were found to preferentially differentiate toward hypertrophy with increased expression of collagen I and transferrin and downregulation of SRY (sex-determining region Y)-box containing gene 9 (Sox9). In conclusion, high iron exposure can compromise chondrocyte metabolism, which, when simultaneously affected by an Hfe loss of function, appears to be more susceptible to the establishment of an OA-related phenotype.


Assuntos
Condrócitos/metabolismo , Compostos Férricos/farmacologia , Proteína da Hemocromatose/genética , Hemocromatose/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Osteoartrite/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Ferritinas/genética , Ferritinas/metabolismo , Regulação da Expressão Gênica , Hemocromatose/complicações , Hemocromatose/genética , Hemocromatose/patologia , Proteína da Hemocromatose/deficiência , Humanos , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/etiologia , Osteoartrite/genética , Osteoartrite/patologia , Oxirredutases/genética , Oxirredutases/metabolismo , Cultura Primária de Células , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteína da Região Y Determinante do Sexo , Transdução de Sinais
12.
PLoS One ; 13(11): e0207441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427936

RESUMO

Osteoporosis is associated with chronic iron overload secondary to hereditary hemochromatosis (HH), but the causative mechanisms are incompletely understood. The main objective of this study was to investigate the role of dietary iron on osteoporosis, using as biological model the Hfe-KO mice, which have a systemic iron overload. We showed that these mice show an increased susceptibility for developing a bone loss phenotype compared to WT mice, which can be exacerbated by an iron rich diet. The dietary iron overload caused an increase in inflammation and iron incorporation within the trabecular bone in both WT and Hfe-KO mice. However, the osteoporotic phenotype was only evident in Hfe-KO mice fed the iron-enriched diet. This appeared to result from an imbalance between bone formation and bone resorption driven by iron toxicity associated to Hfe-KO and confirmed by a decrease in bone microarchitecture parameters (identified by micro-CT) and osteoblast number. These findings were supported by the observed downregulation of bone metabolism markers and upregulation of ferritin heavy polypeptide 1 (Fth1) and transferrin receptor-1 (Tfrc), which are associated with iron toxicity and bone loss phenotype. In WT mice the iron rich diet was not enough to promote a bone loss phenotype, essentially due to the concomitant depression of bone resorption observed in those animals. In conclusion the dietary challenge influences the development of osteoporosis in the HH mice model thus suggesting that the iron content in the diet may influence the osteoporotic phenotype in systemic iron overload conditions.


Assuntos
Proteína da Hemocromatose/genética , Hemocromatose/dietoterapia , Ferro da Dieta/administração & dosagem , Osteoporose/dietoterapia , Idade de Início , Animais , Antígenos CD/genética , Modelos Animais de Doenças , Ferritinas/genética , Hemocromatose/complicações , Hemocromatose/genética , Hemocromatose/patologia , Humanos , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/dietoterapia , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/patologia , Fígado , Camundongos , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteoporose/complicações , Osteoporose/genética , Osteoporose/patologia , Fenótipo , Receptores da Transferrina/genética
14.
Abdom Radiol (NY) ; 42(5): 1434-1443, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28110367

RESUMO

PURPOSE: To evaluate the diagnostic performances of 3 Tesla multi-echo chemical shift-encoded gradient echo magnetic resonance (MECSE-MR) imaging to simultaneously quantify liver steatosis and iron overload in a wide spectrum of diffuse liver diseases having biopsy as reference standard. METHODS: MECSE-MR-acquired images were used to calculate fat fraction and iron content in a single breath-hold in 109 adult patients. Proton density fat fraction (PDFF) was prospectively estimated using complex-based data reconstruction with multipeak fat modeling. Water R2* was used to estimate iron content. Biopsy was obtained in all cases, grading liver steatosis, siderosis, inflammation, and fibrosis. Differences in PDFF and R2* values across histopathological grades were analyzed, and ROC curves analyses evaluated the MR diagnostic performance. RESULTS: Calculated fat fraction measurements showed significant differences (p < 0.001) among steatosis grades, being unaffected by the presence of inflammation or fibrosis (p ≥ 0.05). A strong correlation was found between fat fraction and steatosis grade (R S = 0.718, p < 0.001). Iron deposits did not affect fat fraction quantitation (p ≥ 0.05), except in cases with severe iron overload (grade 4). A strong positive correlation was also observed between R2* measurements and iron grades (R S = 0.704, p < 0.001). Calculated R2* values were not different across grades of steatosis, inflammation, and fibrosis (p ≥ 0.05). CONCLUSION: A MECSE-MR sequence simultaneously quantifies liver steatosis and siderosis, regardless coexisting liver inflammation or fibrosis, with high accuracy in a wide spectrum of diffuse liver disorders. This sequence can be acquired within a single breath-hold and can be implemented in the routine MR evaluation of the liver.


Assuntos
Fígado Gorduroso/diagnóstico por imagem , Sobrecarga de Ferro/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Biópsia , Fígado Gorduroso/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Sobrecarga de Ferro/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
15.
Redox Biol ; 11: 157-169, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27936457

RESUMO

BACKGROUND AND AIMS: In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe-/- mice (an established model of human HFE-hemochromatosis). METHODS: Wild-type, Nrf2-/-, Hfe-/- and double knockout (Hfe/Nrf2-/-) female mice on C57BL/6 genetic background were sacrificed at the age of 6 (young), 12-18 (middle-aged) or 24 months (old) for evaluation of liver pathology. RESULTS: Despite the parenchymal iron accumulation, Hfe-/- mice presented no liver injury. The combination of iron overload (Hfe-/-) and defective antioxidant defences (Nrf2-/-) increased the number of iron-related necroinflammatory lesions (sideronecrosis), possibly due to the accumulation of toxic oxidation products such as 4-hydroxy-2-nonenal-protein adducts. The engulfment of dead hepatocytes led to a gradual accumulation of iron within macrophages, featuring large aggregates. Myofibroblasts recruited towards the injury areas produced substantial amounts of collagen fibers involving the liver parenchyma of double-knockout animals with increased hepatic fibrosis in an age-dependent manner. CONCLUSIONS: The genetic disruption of Nrf2 promotes the transition from iron accumulation (siderosis) to liver injury in Hfe-/- mice, representing the first demonstration of spontaneous hepatic fibrosis in the long term in a mouse model of hereditary hemochromatosis displaying mildly elevated liver iron.


Assuntos
Proteína da Hemocromatose/genética , Hemocromatose/genética , Cirrose Hepática/genética , Fator 2 Relacionado a NF-E2/genética , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Hemocromatose/metabolismo , Hemocromatose/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Ferro/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Knockout , Mutação
16.
Cancer Microenviron ; 9(2-3): 85-91, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28028679

RESUMO

The association of HFE (High Iron FE) major variants with breast cancer risk and behavior has been a matter of discussion for a long time. However, their impact on the expression of iron-related proteins in the breast cancer tissue has never been addressed. In the present study, hepcidin, ferroportin 1, transferrin receptor 1 (TfR1), and ferritin expressions, as well as tissue iron deposition were evaluated in a collection of samples from breast cancers patients and analyzed according to the patients' HFE genotype. Within the group of patients with invasive carcinoma, those carrying the p.Cys282Tyr variant in heterozygosity presented a higher expression of hepcidin in lymphocytes and macrophages than wild-type or p.His63Asp carriers. An increased expression of TfR1 was also observed in all the cell types analyzed but only in p.Cys282Tyr/p.His63Asp compound heterozygous patients. A differential impact of the two HFE variants was further noticed with the observation of a significantly higher percentage of p.Cys282Tyr heterozygous patients presenting tissue iron deposition in comparison to p.His63Asp heterozygous. In the present cohort, no significant associations were found between HFE variants and classical clinicopathological markers of breast cancer behavior and prognosis. Although limited by a low sampling size, our results provide a new possible explanation for the previously reported impact of HFE major variants on breast cancer progression, i.e., not by influencing systemic iron homeostasis but rather by differentially modulating the local cellular expression of iron-related proteins and tissue iron deposition.

17.
BMC Cancer ; 16: 187, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944411

RESUMO

BACKGROUND: While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. METHODS: Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. RESULTS: We confirm previous results by showing that breast cancer epithelial cells present an 'iron-utilization phenotype' with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an 'iron-donor' phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. CONCLUSIONS: The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Homeostase , Ferro/metabolismo , Microambiente Tumoral , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Feminino , Citometria de Fluxo , Expressão Gênica , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Imuno-Histoquímica , Linfonodos/metabolismo , Linfonodos/patologia , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Carga Tumoral
18.
Toxicol Lett ; 234(2): 67-73, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25683033

RESUMO

The use of iron oxide nanoparticles (ION) for diagnostic and therapeutic purposes requires a clear favorable risk-benefit ratio. This work was performed with the aim of studying the ability of polyacrylic acid (PAA)-coated and non-coated ION to induce genotoxicity in human T lymphocytes. For that purpose, their influence on cell cycle progression and on the induction of chromosome aberrations was evaluated. Blood samples collected from healthy human donors were exposed to PAA-coated and non-coated ION, at different concentrations, for 48h. The obtained results showed that, for all culture conditions, the tested ION are not genotoxic and do not influence the cell cycle arrest. Their possible cumulative effect with the iron-dependent genotoxic agent BLM was also evaluated. Blood samples collected from healthy human donors were exposed to ION, at different concentrations, for 48h, in the presence of a pre-determined toxic concentration of BLM. The obtained results showed that, for all culture conditions, the tested ION do not potentiate the clastogenic effects of BLM.


Assuntos
Resinas Acrílicas/toxicidade , Compostos Férricos/toxicidade , Compostos Ferrosos/toxicidade , Nanopartículas Metálicas , Linfócitos T/efeitos dos fármacos , Bleomicina/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Aberrações Cromossômicas/induzido quimicamente , Relação Dose-Resposta a Droga , Humanos , Testes de Mutagenicidade , Medição de Risco , Linfócitos T/patologia , Fatores de Tempo
19.
Arch Toxicol ; 89(10): 1759-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25108419

RESUMO

Iron oxide nanoparticles (ION) can have a wide scope of applications in biomedicine, namely in magnetic resonance imaging, tissue repair, drug delivery, hyperthermia, transfection, tissue soldering, and as antimicrobial agents. The safety of these nanoparticles, however, is not completely established, namely concerning their effect on immune system and inflammatory pathways. The aim of this study was to evaluate the in vitro effect of polyacrylic acid (PAA)-coated ION and non-coated ION on the production of six cytokines [interleukin 1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), interferon gamma (IFN-γ) and interleukin 10 (IL-10)] by human peripheral blood cells, and to determine the inflammatory pathways involved in this production. The obtained results showed that PAA-coated and non-coated ION were able to induce all the tested cytokines and that activation of transforming growth factor beta (TGF-ß)-activated kinase (TAK1), p38 mitogen-activated protein kinases (p38 MAPK) and c-Jun N-terminal kinases (JNK) were involved in this effect.


Assuntos
Resinas Acrílicas/química , Citocinas/metabolismo , Inflamação/induzido quimicamente , Nanopartículas de Magnetita/administração & dosagem , Humanos , Inflamação/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Nanopartículas de Magnetita/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Cancer Lett ; 347(1): 1-14, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24486738

RESUMO

Iron is an essential element and a critical component of molecules involved in energy production, cell cycle and intermediate metabolism. However, the same characteristic chemistry that makes it so biologically versatile may lead to iron-associated toxicity as a consequence of increased oxidative stress. The fact that free iron accumulates with age and generates ROS led to the hypothesis that it could be involved in the etiogenesis of several chronic diseases. Iron has been consistently linked to carcinogenesis, either through persistent failure in the redox balance or due to its critical role in cellular proliferation. Several reports have given evidence that alterations in the import, export and storage of cellular iron may contribute to breast cancer development, behavior and recurrence. In this review, we summarize the basic mechanisms of systemic and cellular iron regulation and highlight the findings that link their deregulation with breast cancer. To conclude, progresses in iron chelation therapy in breast cancer, as a tool to fight chemotherapy resistance, are also reviewed.


Assuntos
Neoplasias da Mama/metabolismo , Homeostase , Ferro/metabolismo , Animais , Feminino , Humanos , Quelantes de Ferro/administração & dosagem , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA